Showing posts with label VLSI. Show all posts
Showing posts with label VLSI. Show all posts

Tuesday, August 12, 2025

Generate two arrays of length 10, whose elements are unique to each other.


CODE:

class mem;
  rand int a[10];
  rand int b[10];
  
  constraint c_a_b {
    unique { b };
    foreach ( a[i] ) {
      b[i] inside {[1:20]};
      a[i] inside {[1:20]};
      !(a[i] inside b);      
    }
  }
  
  function void post_randomize();
    $display ("A:%p",a);
    $display ("B:%p",b);
  endfunction: post_randomize
    
endclass: mem
    
module top;
  mem m;
  
  initial begin
    m = new;
    void'(m.randomize());
    
  end
endmodule: top


OUTPUT:

Compiler version U-2023.03-SP2_Full64; Runtime version U-2023.03-SP2_Full64; Aug 12 11:01 2025
A:'{4, 5, 17, 19, 8, 4, 5, 12, 9, 15}
B:'{18, 16, 3, 20, 1, 11, 7, 2, 10, 14}
V C S S i m u l a t i o n R e p o r t

Single Linked List in System Verilog

 Lets code a simple singly Linked List which traverse from head to tail in one direction.

Requirement is simple, you will have a Node which contains two main elements, data and pointer to next node.

On adding a new node, the new node should create a handle of the old node and assign the pointer to the new one.


CODE:

class Node;
  int id;
  int data;
  Node next_node;
  
  function new ( int i );
    id = i;
    next_node = null;
  endfunction: new
  
  function void load_data ( int val );
    data = val;
  endfunction: load_data

  function void add_node ( Node node );
    node.next_node  = new(id);
    node.next_node  = this;
  endfunction: add_node
  
 endclass: Node
  
  module top;
    Node n[10];
    
    initial begin
      foreach ( n[i] ) begin
        n[i]      = new(i);
        n[i].data = $urandom_range(10,100);
        if(i>0) n[i].add_node(n[i-1]);           
      end 
      
      foreach ( n[i] ) begin        
        if(i==9) 
          $display ( "NODE ID:%0d Data:%0d NEXT_PTR:NULL", n[i].id,n[i].data );
        else 
          $display ( "NODE ID:%0d Data:%0d NEXT_PTR:%0d", n[i].id,n[i].data,n[i].next_node.id );
      end
    end        
  endmodule: top



RESULT:

Compiler version U-2023.03-SP2_Full64; Runtime version U-2023.03-SP2_Full64; Aug 12 10:17 2025
NODE ID:0 Data:54 NEXT_PTR:1
NODE ID:1 Data:62 NEXT_PTR:2
NODE ID:2 Data:68 NEXT_PTR:3
NODE ID:3 Data:44 NEXT_PTR:4
NODE ID:4 Data:75 NEXT_PTR:5
NODE ID:5 Data:88 NEXT_PTR:6
NODE ID:6 Data:89 NEXT_PTR:7
NODE ID:7 Data:72 NEXT_PTR:8
NODE ID:8 Data:62 NEXT_PTR:9
NODE ID:9 Data:53 NEXT_PTR:NULL
V C S S i m u l a t i o n R e p o r t

Tuesday, September 17, 2024

How to kill a thread(s) in System Verilog

 The code use process class to kill the thread. 

class base;
  int id;
  
  task display();
    int x=0;
    for(int i=0;i<5;i++) begin 
      #10ns;
      x++;
      $display("%t BASE:%0d X:%0d",$time,id,x);
    end
  endtask

endclass

class test;
  process p[4];
  task run_phase();
    for(int i=0;i<4;i++) begin //{
      base b = new;
      fork: fork_p
        automatic base b1 = b;
        automatic int j = i;
        begin: run_d
          p[j] = process::self();
          b1.id = j;
          b1.display();
        end
      join_none
    end //}
    $display("%t Threads spawned",$time);
  endtask
  
endclass

module top;
  test t;
  
  initial begin
    t = new;
    fork
    t.run_phase();
    join_none
     #30ns;
    foreach(t.p[i]) t.p[i].kill();
  end
  
endmodule
  

Result:

Compiler version U-2023.03-SP2_Full64; Runtime version U-2023.03-SP2_Full64; Sep 17 10:31 2024
0 Threads spawned
10 BASE:0 X:1
10 BASE:1 X:1
10 BASE:2 X:1
10 BASE:3 X:1
20 BASE:0 X:2
20 BASE:1 X:2
20 BASE:2 X:2
20 BASE:3 X:2
V C S S i m u l a t i o n R e p o r t
Time: 30 ns
CPU Time: 0.370 seconds; Data structure size: 0.0Mb
Tue Sep 17 10:31:42 2024

Saturday, April 22, 2023

KNIGHT TOUR in System Verilog

Following is the SV code for knight tour. On each randomisation, we get the next position of knight.

The concept is simple, based on which we derived the constraints.

  1. knight should operate within boundaries of the chess board.
  2. knight can move on any direction if it does not violate point (1).
  3. The position of the knight can be taken as row, col.
  4. At best it can move in 8 directions
    1. If row is incremented/decremented by 2 positions, column can move 1 position from the latest row pos.
    2. If row is incremented/decremented by 1 position, column can move 2 position from the latest row pos.
  5. The position is calculated based on the board length, current row and column.

NOTE:
I'll check if we can walk with the knight on the chess board without repeating the same chess square again.
I doubt that there might some limitations to achieve this.
I'll  update on it, as and when I get some clues ...

CODE:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class knight_walk;
  parameter int N = 5;
  int row;
  int col;
  rand int next_row;
  rand int next_col;
  rand int pos;
  
  function new ();
    row = $urandom_range(0,N-1);
    col = $urandom_range(0,N-1);
    pos = N*row + col;
    $display(" INITIAL POS:%0d ROW:%0d COL:%0d",pos,row,col);
  endfunction
  
  constraint c_knight {
    solve next_row before next_col;
    next_row inside { row+2,row-2,row+1,row-1 };
    next_col inside { col+2,col-2,col+1,col-1 };
    next_row inside {[0:4]};
    next_col inside {[0:4]};
    
    if( next_row inside {row+2,row-2} ) { next_col inside {col+1,col-1}; }
    else                                { next_col inside {col+2,col-2}; }
    
   }
  
  function void post_randomize();
    row = next_row;
    col = next_col;
    pos = row*N+col;
    $display("POST_RANDOMIZE:: POS:%0d ROW:%0d COL:%0d",pos,row,col);
  endfunction
  
  
endclass: knight_walk

module top;
  knight_walk chess;
  
  initial begin
    chess = new;
    repeat(4)
    void'(chess.randomize());
  end
endmodule: top



RESULTS:
Compiler version S-2021.09; Runtime version S-2021.09; Apr 22 04:34 2023
INITIAL POS:3 ROW:0 COL:3
POST_RANDOMIZE:: POS:12 ROW:2 COL:2
POST_RANDOMIZE:: POS:19 ROW:3 COL:4
POST_RANDOMIZE:: POS:8 ROW:1 COL:3
POST_RANDOMIZE:: POS:1 ROW:0 COL:1
POST_RANDOMIZE:: POS:8 ROW:1 COL:3
POST_RANDOMIZE:: POS:1 ROW:0 COL:1
POST_RANDOMIZE:: POS:8 ROW:1 COL:3
POST_RANDOMIZE:: POS:1 ROW:0 COL:1
POST_RANDOMIZE:: POS:8 ROW:1 COL:3
POST_RANDOMIZE:: POS:11 ROW:2 COL:1
V C S S i m u l a t i o n R e p o r t

Friday, April 21, 2023

CIRCULAR QUEUE implementation in System Verilog


NOTE:

Print Statements are implemented on every function call.

The Read pointer in dequeue is incremented by one, if not empty before the print.

Same is the case for write pointer.


In this setup, I used the MSB of wr_ptr and rd_ptr to represent a rollover of the memory ( array ).This in turn is used to generate the FULL and EMPTY signals.


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class circular_queue;
  parameter int N = 5;
  parameter int WIDTH = 3;
  
  int arr[N];
  bit isFull;
  bit isEmpty;
  bit [WIDTH:0] wr_ptr; //clog2 ??
  bit [WIDTH:0] rd_ptr;
  
  extern function new();
  extern function void enqueue(int val);
  extern function int dequeue();
  extern function int peek();  
  
endclass: circular_queue
    
    function circular_queue::new();
      isEmpty = 1;
      isFull = 0;
    endfunction: new
    
    function void circular_queue::enqueue(int val);
      if(!isFull) begin
        isEmpty     = 0;
        arr[wr_ptr[WIDTH-1:0]] = val;
        wr_ptr[WIDTH-1:0] = (wr_ptr[WIDTH-1:0]+1) % N;
        wr_ptr[WIDTH] = wr_ptr[WIDTH-1:0] == 0 ? ~wr_ptr[WIDTH] : wr_ptr[WIDTH];
      end
      isFull = ( wr_ptr[WIDTH-1:0] == rd_ptr[WIDTH-1:0] && wr_ptr[WIDTH]!=rd_ptr[WIDTH]) ? 1 : 0;
      $display("ENQUEUE:: WR_PTR:%d RD_PTR:%d VAL:%02d ARR:%p FULL:%d EMPTY:%d",wr_ptr[WIDTH-1:0],rd_ptr[WIDTH-1:0],val,arr,isFull,isEmpty);
    endfunction: enqueue
    
    function int circular_queue::dequeue();
      int val;
      if(!isEmpty) begin
        isFull = 0;
        val = arr[rd_ptr[WIDTH-1:0]];
        rd_ptr[WIDTH-1:0] = (rd_ptr[WIDTH-1:0]+1) % N;
        rd_ptr[WIDTH] = rd_ptr[WIDTH-1:0] == 0 ? ~rd_ptr[WIDTH] : rd_ptr[WIDTH]; 
      end
      isEmpty = ( wr_ptr[WIDTH-1:0] == rd_ptr[WIDTH-1:0] && wr_ptr[WIDTH]==rd_ptr[WIDTH]) ? 1 : 0;
      $display("DEQUEUE:: WR_PTR:%d RD_PTR:%d VAL:%02d ARR:%p FULL:%d EMPTY:%d",wr_ptr[WIDTH-1:0],rd_ptr[WIDTH-1:0],val,arr,isFull,isEmpty);
      return val;
    endfunction: dequeue
    
    function int circular_queue::peek();
      int val;
      if(!isEmpty)
      val = arr[rd_ptr];
      $display("PEEK   :: WR_PTR:%d RD_PTR:%d VAL:%02d ARR:%p FULL:%d EMPTY:%d",wr_ptr[WIDTH-1:0],rd_ptr[WIDTH-1:0],val,arr,isFull,isEmpty);
      return val;
    endfunction: peek
    
module top;
  circular_queue cq;
  
  initial begin
    int wr_val;
    int rd_val;
    
    cq = new;
    repeat(4) begin
      wr_val = $urandom_range(1,100);
      cq.enqueue(wr_val);
    end
    repeat(20) begin
      randcase
      	2 : begin
          wr_val = $urandom_range(1,100);
          cq.enqueue(wr_val);
        end
        2 : begin
          rd_val = cq.dequeue();
        end
        1 : begin
          rd_val = cq.peek();
        end
      endcase
    end
  end
endmodule: top


> OUTPUT::

Chronologic VCS simulator copyright 1991-2021
Contains Synopsys proprietary information.
Compiler version S-2021.09; Runtime version S-2021.09; Apr 22 02:40 2023
ENQUEUE:: WR_PTR:1 RD_PTR:0 VAL:39 ARR:'{39, 0, 0, 0, 0} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:2 RD_PTR:0 VAL:61 ARR:'{39, 61, 0, 0, 0} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:3 RD_PTR:0 VAL:74 ARR:'{39, 61, 74, 0, 0} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:4 RD_PTR:0 VAL:71 ARR:'{39, 61, 74, 71, 0} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:4 RD_PTR:1 VAL:39 ARR:'{39, 61, 74, 71, 0} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:0 RD_PTR:1 VAL:97 ARR:'{39, 61, 74, 71, 97} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:1 RD_PTR:1 VAL:23 ARR:'{23, 61, 74, 71, 97} FULL:1 EMPTY:0
PEEK :: WR_PTR:1 RD_PTR:1 VAL:61 ARR:'{23, 61, 74, 71, 97} FULL:1 EMPTY:0
ENQUEUE:: WR_PTR:1 RD_PTR:1 VAL:91 ARR:'{23, 61, 74, 71, 97} FULL:1 EMPTY:0
DEQUEUE:: WR_PTR:1 RD_PTR:2 VAL:61 ARR:'{23, 61, 74, 71, 97} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:2 RD_PTR:2 VAL:58 ARR:'{23, 58, 74, 71, 97} FULL:1 EMPTY:0
DEQUEUE:: WR_PTR:2 RD_PTR:3 VAL:74 ARR:'{23, 58, 74, 71, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:2 RD_PTR:4 VAL:71 ARR:'{23, 58, 74, 71, 97} FULL:0 EMPTY:0
PEEK :: WR_PTR:2 RD_PTR:4 VAL:97 ARR:'{23, 58, 74, 71, 97} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:3 RD_PTR:4 VAL:27 ARR:'{23, 58, 27, 71, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:3 RD_PTR:0 VAL:97 ARR:'{23, 58, 27, 71, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:3 RD_PTR:1 VAL:23 ARR:'{23, 58, 27, 71, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:3 RD_PTR:2 VAL:58 ARR:'{23, 58, 27, 71, 97} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:4 RD_PTR:2 VAL:20 ARR:'{23, 58, 27, 20, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:4 RD_PTR:3 VAL:27 ARR:'{23, 58, 27, 20, 97} FULL:0 EMPTY:0
DEQUEUE:: WR_PTR:4 RD_PTR:4 VAL:20 ARR:'{23, 58, 27, 20, 97} FULL:0 EMPTY:1
DEQUEUE:: WR_PTR:4 RD_PTR:4 VAL:00 ARR:'{23, 58, 27, 20, 97} FULL:0 EMPTY:1
ENQUEUE:: WR_PTR:0 RD_PTR:4 VAL:06 ARR:'{23, 58, 27, 20, 6} FULL:0 EMPTY:0
ENQUEUE:: WR_PTR:1 RD_PTR:4 VAL:73 ARR:'{73, 58, 27, 20, 6} FULL:0 EMPTY:0
V C S S i m u l a t i o n R e p o r t
Time: 0 ns
CPU Time: 0.700 seconds; Data structure size: 0.0Mb
Sat Apr 22 02:40:54 2023

Thursday, April 20, 2023

System Verilog - Fork, Join

A common question in interviews for System Verilog is .... 

How do you come out of fork-join_none/any if 2 out of the 3 process in fork are complete.

Fork-join_any will wait until any one process is complete.

If you want to wait until any two process are complete, you can use semaphores or static variables inside each process and wait on the semaphore/variable for join_any/join_none statement.


One more questions revolving it is with fork_join.

You have 3 processes, and you need to come out of fork_join when 2 out of 3 process are complete. 

How to achieve this?

One way of doing it is using labels.

Check out....

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class test;
  static int cnt;
  
  task check_fork;
    fork
      begin: p1
        #30;cnt++;
        $display("%t - Process-1 cnt:%d",$time,cnt);
        
        if(cnt==2) begin
            disable p3;
            disable p2;
        end
      end
      begin: p2
        #40;cnt++;
        $display("%t - Process-2 cnt:%d",$time,cnt);
        
        if(cnt==2) begin
            disable p3;
            disable p1;
        end
      end
      begin: p3
        #10;cnt++;
        $display("%t - Process-3 cnt:%d",$time,cnt);
        
        if(cnt==2) begin
            disable p2;
            disable p1;
        end
      end
    join
        $display("%t - Process-Complete cnt:%d",$time,cnt);
  endtask
endclass: test

module top;
  
  test s;
  
  initial begin
    s=new;
    s.check_fork;

  end
endmodule: top

RESULT:

Chronologic VCS simulator copyright 1991-2021
Contains Synopsys proprietary information.
Compiler version S-2021.09; Runtime version S-2021.09; Apr 20 11:06 2023
10 - Process-3 cnt: 1
30 - Process-1 cnt: 2
30 - Process-Complete cnt: 2
V C S S i m u l a t i o n R e p o r t
Time: 30 ns
CPU Time: 0.560 seconds; Data structure size: 0.0Mb
Thu Apr 20 11:06:20 2023

Generating prime numbers between 1 to 100

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 class test ; int prime_q[$]; function voi...